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Abstract. Digital advertisements offer a full spectrum of behavioral customization for
timing and content capabilities. The existing research in display advertising has pre-
dominantly concentrated on the content of advertising; however, our focus is on opti-
mizing the timing of display advertising. In practice, users are constantly adjusting their
engagement with content as they process new information continuously. The recent de-
velopment of emotional tracking and wearable technologies allows platforms to monitor
the user’s engagement in real time. We model the user’s continuous engagement process
through a Brownian motion. The proposed optimal policy regarding the timing of be-
havioral advertising is based on a threshold policywith a trigger threshold and target level.
Specifically, the platform should insert the advertisement when the user’s engagement
level reaches the trigger threshold, and the length of the advertisement should let the user’s
engagement level drop to the target level. Analogous to the familiar idea of “price dis-
crimination,” the methods we propose in this study allow the platforms to maximize their
revenue by “discriminatory” customization of the timing and length of the advertisement
based on the behavior of individual users. Finally, we quantify the benefits of the proposed
policy by comparing it with the practically prevalent policies (i.e., preroll, midroll, and a
mix of the two) through a simulation study. Our results reveal that, for a wide range of
settings, the proposed policy not only significantly increases the platform’s profitability but
also improves the completion rate at which consumers finish viewing the advertisement.
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Strategy and timing are the Himalayas of marketing.
Everything else is the Catskills.—Al Ries, cofounder and
chairman of Ries & Ries (2005)

1. Introduction
According to a recent report in theWall Street Journal,
digital advertisement spending in the United States
surged 22% from the previous year to record $72.5
billion in 2016 (Shields 2017).More strikingly, in 2017,
digital advertising in the United States surpassed
television spending for the first time by a great
margin, an increase fueled largely by mobile ad-
vertisement spending (Slefo 2017). In 2016, spending
on mobile advertising surged 77% to $33.6 billion
(Shields 2017). Juniper Research estimates that global
digital advertising spending across mobile, wearable,
and online devices will exceed $285 billion by 2020
(Bajpai 2016). The world is rapidly moving toward
digitalized advertising, challenging older channels
and introducing innovative strategies. However,

finding the right moment to reach consumers remains a
crucial but open question for the digital advertising
industry (Gupta 2015).
Compared with traditional television advertise-

ments, for which the content provider has to play the
same advertisement to the entire audience at the same
time, the digital advertisement provider can choose
not only what content to play but also when to play it.
Thus, the digital advertisement offers a full spectrum
of customization capabilities regarding the content
and timing of the advertisement. Existing research
and industry practice have predominantly consid-
ered the content dimension, in which the content
provider can personalize the digital advertising content
based on users’ browsing behavior, location, and
search histories (Chen and Stallaert 2014, Guo et al.
2015). However, it is less clear what timing is optimal
for the digital advertisement provider. For example,
Facebook is poised to test preroll video advertising
(i.e., a promotional message that plays before the
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content) on its video-on-demand service “Facebook
Watch” after a longtime ban of the preroll format
(Sloane 2017). Around the same time, Google is limiting
the use of preroll advertisements on YouTube (Reale
2017). It is unarguably true that timing is very im-
portant for the stakeholders involved, but there are no
clear answers to questions such as when the platform
should play the advertisement and how long each
advertisement should be. Further, there is a lack of
rigorous academic research on this crucial but over-
looked topic. We aim to address this gap by investi-
gating the optimal policy for the content provider
regarding the timing of playing its advertisements
on platforms.

With the rapid development of relevant technolo-
gies, monitoring the user’s engagement or feeling in
real time is no longer science fiction but the hard
reality. There are many successful stories showing
how mobile devices, including wearable technolo-
gies, can track the user’s engagement activities. For
example, Ginger.io uses continuous data to help peo-
ple track their moods and help doctors track the
health of their patients (Vivero 2018). Activity trackers
such as Fitbit series and Spire can collect not only
users’ biometric data (i.e., heart rate, distance walked
or run, temperature, breath, quality of sleep) but also
data on the user’s mood through hidden sensors
(Reddy 2015). In most cases, these devices are con-
nected and synced with the user’s mobile phone
wirelessly, which provides a means to track behavior
continuously. Recently, FOVE, a cutting-edge virtual
reality (VR) manufacturer, introduced the first eye-
tracking headset in the world. Eye tracking is a well-
established research methodology to trace emotion
and attention (Teixeira et al. 2012). Since marketing
researchers began promoting this stream of research
in 1978 (Russo 1978), eye tracking has been success-
fully applied in many fields of study (Wedel and
Pieters 2008). Facial-tracking technology has also
helped to identify people’s emotions. Both Apple and
Nielsen bought startups specializing in identifying
users’ feelings through facial-cue recognition (Foster
2016). In summary, rapid and disruptive technology
innovations on emotional analytics allow the adver-
tisement platform to track and analyze users’ emo-
tions and engagement in real time.

Firms have also begun to use tracking information
to improve advertisement decision. For example,
during the Wimbledon tennis championships, Jaguar
used wearable technology and court sensors to measure
themood and emotion of the crowd to facilitate a social
media campaign (Faull 2015). Mars, Inc., a world-
leading food company, used an emotion-detection
app developed by Massachusetts Institute of Tech-
nology (MIT) to evaluate different advertisements (de
Jesus 2018).

The key focus of our study is to address the optimal
timing and length for digital advertising, especially in
the context of displaying advertising. Against the
backdrop of exponential growth of digital adver-
tisement and emerging capabilities to track the user’s
feelings, it is urgent and crucial for academic research
to provide theoretical support to guide the practice.
In this study, we formulate a dynamic advertising
model in which, at each instant, the user’s engage-
ment may increase or decrease from watching the
content. The random update of user engagement
behavior induces a stochastic process, which we cap-
ture through a drifted Brownian motion. Our study
provides a framework to model and study the issue of
timing in digital advertising. More importantly, our
analysis provides critical insights to the practitioners
by offering them actionable strategies regarding the
timing of advertisement. Next, we highlight the key
questions addressed in this study.
Thefirst keyquestion thatwe investigate is as follows:

What should the optimal insertion policy be for digital
advertisement when the platform can track the user’s
engagement level? More specifically, what is the
optimal timing and length of each advertisement? As
we pointed out earlier, there is scant rigorous aca-
demic research to address the timing of advertise-
ment, but the answer to this question is crucial for
many platforms whose revenue mainly relies on
advertisements. Currently, most platforms use the
preroll (i.e., inserting the advertisement at the very
beginning of the content), midroll (i.e., inserting the
advertisement in the middle of the content), and
mixed strategies. The answer to our research questions
may shed light on this urgent issue. Intuitively, the
structure of the optimal policy might be very complex,
because users dynamically adjust their engagement
according to content and random factors. Surprisingly,
we find that a simple threshold policy is the optimal
policy. When the user’s engagement level reaches a
certain trigger threshold, an advertisement with the
appropriate length is placed such that the user’s en-
gagement level drops to the prespecified target level.
This process will repeat every time that consumer’s
engagement level reaches the trigger threshold until
the consumer leaves the platform. From a conceptual
point of view, our proposed policy is analogous to the
familiar idea of “price discrimination,” which allows
the platform or content provider to maximize its
revenue by “discriminatory” customization of the
timing and length of advertisements, based on the
individual user’s behavior.
Next, to gain a deeper understanding of the optimal

timing of advertisement under the finite horizon, we
explore the following question: What is the structure
of the optimal policy if the user can leave during the
content period or the content length is restricted? One
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may intuitively think that the policy should become
dynamic, because there is an additional dimension of
uncertainty involved. However, we find that this is
not the case. We analytically show that a simple
threshold policy can still be the optimal policy. Our
analysis in this setting also reveals another interesting
finding under the finite horizon case. Counter to our
intuition that the optimal trigger threshold will al-
ways decrease as the time approaches the end of the
finite horizon, we find that it is optimal for the plat-
form to first increase then decrease the trigger thresh-
old when approaching the end of the planning hori-
zon, because the platform needs to achieve a balance
between the insertion time and the length of each
advertisement. Our results here further corroborate
the results of the infinite horizon case, which showed
that the proposed policy possesses the property of
simple implementation (i.e., threshold policy), which
is very important for practitioners.

Moreover, to examine the performance of our pro-
posed policies, we raise the following research question:
How do the proposed policies perform comparedwith
the prevalent industry policies (e.g., preroll, midroll,
and mix strategy) in terms of profitability and service
level? The answer to this question is highly relevant to
platform practitioners who strive to increase revenue
from advertisements. One might intuitively expect
that the proposed policy would affect the user’s re-
tention rate negatively, as the platform can precisely
insert the advertisement at the climax of the user’s
engagement with the content. Surprisingly, contrary
to this intuition, our results reveal that the proposed
optimal policy can yield not only a much higher
revenue but also a lower leaving rate compared with
the current prevalent policies. The managerial im-
plication here is that the timing and length of the
advertisement can have a significant impact on the
platform’s profit and user retention rate. From a
practical perspective, the platform should have a li-
brary of advertisements with different lengths to
implement the proposed policies.

We have also conducted sensitivity analyses on
different parameters and identified an efficient heu-
ristic to the optimal policy under the finite horizon.
One noteworthy finding is about the volatility of the
consumer’s engagement level. On the one hand, as vol-
atility increases, the consumer may leave the platform
early, which suggests that the platform should play a
shorter advertisement. On the other hand, as volatility
increases, it takes less time for the consumer’s engage-
ment level to rise, which suggests that the platform
can insert a longer advertisement. It is not obvious
how the optimal policy will change as volatility in-
creases. Interestingly, we find that the advertisement
length should increase as volatility increases. Further,
we also identify that the optimal policies under the

infinite horizon can be an efficient heuristic to the
optimal policy under the finite horizon. This result is
practically important because the policy under the
infinite horizon is computationally more efficient, as
the platform only needs to calculate once, in contrast
with the optimal policy under the finite horizon
where the platform has to dynamically update the
thresholds as time passes.
The rest of the paper is organized as follows. In the

next section, we briefly review the relevant literature
and highlight our contributions with respect to past
studies. In Section 3, we describe the model setting
and dynamics of the user’s engagement level. In
Section 4, we analyze the base model, outline the
intuition behind the main results, and conduct a
sensitivity analysis. In Section 5, we extend our base
model in various ways to obtain new insights. In
Section 6, we conduct a simulation study to quantify
the benefits of the proposed policies. The paper con-
cludes with managerial implications and possible ave-
nues for future research in Section 7.

2. Literature Review
Our study has points of contact with the literature in
(i) pricing and scheduling of digital advertising, (ii)
emerging literature on behavioral targeting, and (iii)
applications of Brownian motion in marketing and
information systems (IS), but it also deviates from the
existing literature in some essential aspects.
To begin with, our research is closely related to the

pricing and scheduling of advertising literature in the
IS area. Tan and Mookerjee (2005) examine the joint
marketing–information technology (IT) spending al-
location problem and propose the optimal spending
allocation between advertising and IT for electronic
retailers. Further, Fan et al. (2007) analyze the trade-
offs between pricing and advertising strategies for
media providers. They find that when the content
quality is high and online access cost is low, com-
panies can sell commercial-free programs online,
whereas it is more beneficial to offer free programs
with advertisement when online access cost is rela-
tively high. Kumar et al. (2007) propose a variety of
efficient solutions that solve the advertisement sched-
uling problem to maximize website revenue. Kumar
and Sethi (2009) use optimal control theory to char-
acterize the policy for an online platform where the
revenue comes from both subscription fees and ad-
vertisements. Liu et al. (2012) find that in the presence
of information processing constraints, although ad-
vertising may still cause a user to switch, it may not
result in a sale. Chen et al. (2016) compare two prev-
alent revenue models (brokerage and advertising) for a
user-to-user platform. Specifically, they discuss how
the chosen revenue model affects the revenue of a
platform, buyers’ payoffs, sellers’ payoffs, and social
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welfare. Mookerjee et al. (2017) develop a model
whose objective is to maximize the advertising firm’s
revenue subject to a click-through-rate constraint.
Hao et al. (2017) use a two-sided market model to
analyze the agency pricing for app sales by incor-
porating both the app developer and the platform
owner. Sun et al. (2017) propose the optimal se-
quencing policies for the fading advertisement in the
mobile application environment. The existing studies
in advertising have mainly focused on the selection
and scheduling of advertisement, and different rev-
enue models for the advertising. Unlike the afore-
mentioned studies, we focus on the timing of the
advertising in the digital space. Specifically, we de-
velop a framework for modeling the user’s engage-
ment continuously to characterize the optimal policy
facing the content provider regardingwhen to play its
advertisement and how long the advertisement should
be for each individual user.

Second, our study intersects the emerging stream of
literature on behavioral targeting of online adver-
tising. Because of rapid development in information
technologies, firms can collect detailed user behavior-
al information (i.e., taste, location, habits, and brows-
ing history) and target individual users with tailored
advertisements. Beales (2011) uses data collected from
online advertising networks and finds that prices and
conversion rates for behaviorally targeted adver-
tisements are more than twice as high as those for
traditional advertising. Zhao and Xue (2012) explore
advertising competition when competing firms are
asymmetrically informed about the user value. Chen
and Stallaert (2014) study the economic implica-
tions when an online publisher engages in behavioral
targeting. Leveraging the data of mobile phone users,
Andrews et al. (2016) find that commuters in crowded
subway trains are about twice as likely to respond
to a mobile offer by making a purchase compared
with those in noncrowded trains. Lu et al. (2016) use a
large, individual-level clickstream data set to exam-
ine the impact of behavioral and contextual target-
ing on users’ click behavior and find that the com-
bination of both targeting methods leads to better
click-through rates. Chen et al. (2017) use a duopoly
model to show that targeting users based on their real-
time locations on mobile platforms can increase firm
profit compared with traditional targeting and uni-
form pricing. Shen and Villas-Boas (2018) investigate
the effects of behavior-based advertising when prefer-
ences for two products are correlated. Existing liter-
ature highlights the strategic use of behavioral tar-
geting, which is mainly based on the content of the
advertising. Our study complements this emerging
streamof literature by investigating the optimal timing
of the insertion policy of digital advertisement, which
is not well understood in the literature.

Third, our study also contributes to the applications
of Brownianmotion. Brownianmotion and variations
of Brownian motion have been applied to model the
stochastic process in bothmarketing and IS literature.
In themarketing literature, scholars have usedBrownian
motion to model the dynamics of product informa-
tion search and consumer preference. For example,
Branco et al. (2012, 2016) develop a Brownian motion
framework to study the consumer’s optimal stopping
rule for the product search process. Ke et al. (2016)
extend the previous studies by considering the in-
formation search when facing more than one decision
alternative. Villas-Boas (2018) studies firms’ reposi-
tioning decision when the dynamics of consumer
preference follow a Brownian motion. In the IS lit-
erature, Zhang and Zhang (2015) use Brownian mo-
tion tomodel online traders’ order and discuss whether
the internet stock trading affects financial market
equilibrium. IS researchers have also applied real
option pricing method, which is based on the geometric
Brownian motion, to study the service-oriented ar-
chitecture migration (Ghosh and Li 2013) and cyber-
security investment (Benaroch 2018). Our research not
only provides a theoretical framework on how to
model the user’s continuous engagement with the
platform but also makes a unique contribution to the
application of Brownian motion by considering im-
pulse control. Specifically, in most existing studies, a
firm’s action does not affect the underlying process;
even for the very few papers that indicate a firm’s
action can affect the underlying process Xt, their
control is dXt rather than Xt. As a result, the un-
derlying process Xt remains continuous after the
control. In contrast to these studies, the control in our
setting (i.e., insertion of advertisement) directly in-
fluences the dynamic of the process and makes the
underlying process Xt become discontinuous. Con-
sequently, our problem becomes an impulse control
problem and is much more difficult to solve.
To the best of our knowledge, this is the first at-

tempt to construct a theoretical model of user en-
gagement to optimize advertisement insertion policy.
Our study not only sheds light on the content pro-
vider of the digital advertisement but also provides
practical guidance to the emerging wearable tech-
nology industry. This study also makes a theoretical
contribution to the digital advertising literature by
developing a general framework to model the user’s
engagement levels in continuous time.

3. The Model
In this section, we first introduce the basic model and
assumptions. This is followed by a detailed discus-
sion of how advertisement affects the user’s engage-
ment and decisions facing the online platform.
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3.1. User Engagement Level Process
Let us consider a scenario in which a user watches a
new episode of a television (TV) series on a video
streaming platform, plays a popularmobile game on a
smartphone, or reads a classic novel on a mobile app.
In all of these cases, the user’s engagement with the
content changes constantly. Specifically, users will
update their engagement level continuously depending
on how much they enjoy the content, how the story
unfolds, or how the game progresses. Following the
framework of Branco et al. (2012, 2016), we model the
processof consumers’ continuous engagement through
a Brownian motion.1 There are three noteworthy dif-
ferences between our modeling techniques and those
of Branco et al. (2012, 2016). First, to reflect the fact
that advertisement is intrusive to the consumer’s
engagement, we introduce the stochastic impulse
control such that the insertion of advertisement will
affect the consumer’s engagement level discontinu-
ously, whereas there is no sudden jump in Branco
et al. (2012, 2016). Second, the platform is able to track
the consumer’s engagement level instantaneously. As
a result, the optimal decisions in our setting are no
longer static as in previous literature. Third, we in-
troduce a drift term, µ, to characterize the overall
(positive or negative) trend of the consumer’s en-
gagement with the content; this term was set equal to
zero in Branco et al. (2012, 2016). Next, we illustrate
the details of our model.

To capture the user’s instantaneous interest level
toward the content, we let Xt be the engagement level
at time t. Consider a consumer who actively engages
with the content on the platform. Apart from the fact
that this consumer may enjoy or dislike the genre of
the content, he or she will also update his or her
engagement level continuously depending on how
the story unfolds or the game progresses. That is,
there are two factors contributing to the change of the
user’s engagement level: deterministic trend and ran-
dom component. Formally, to model the user’s con-
tinuous evolution of engagement, we let Xt � µt + Zt,
where the first and second terms capture the constant
change and stochastic change, respectively.2 Note
that µ is also known as the drift term, which captures
the trend of the user’s overall engagement level over
time. For example, when users watch a mystery
movie, their general engagement level is likely to
increase as the story approaches the finale. Another
example is that for mobile games, on average, players
are more engaged in the game as they spend more
time on their smartphones. Both examples denote the
situation where µ> 0. The drift term µ can also be
negative, which reflects a case in which a user might
initially have a high level of anticipation for the
content but later find that the content does not match
his or her expectations.

The drift term captures the deterministic component
of how users update their engagement level, whereas
the second term, Zt, reflects the random change in the
process (i.e., stochastic component). Note that the
realization of random change can be either positive or
negative, which reflects the fact that the content at
time instant t can either fit the user’s preference or not.
For example, game players may constantly change
their engagement level due to the random outcomes
of the game. If they receive their preferred in-game
equipment, their interest level is likely to increase, and
vice versa if they obtain undesired in-game equipment.
To formally characterize this constantly changing ran-
domness, we let Zt � σBt, where σ> 0 is known as the
volatility reflecting the magnitude of the stochastic
change, and Bt is the standard Brownian motion. For
tractability, we focus on the case where σ is a constant
across the time, but in general, the insights remain qual-
itatively the same as long as users do not know the exact
value of σ prior to their engagement with the content.
Figure 1 provides an illustrative example of how

user engagement level x changes along with time t. In
summary, we model the user engagement level as
Xt � µt + σBt, where the first component denotes the
trend of the user’s engagement level over time, and
the second component characterizes the stochastic
change. Without loss of generality, we assume that the
initial engagement level X0 is a nonnegative number;
otherwise, the user would not choose to join the
platform in the first place. After spending t time units,
the current engagement level of the user becomes Xt.
In the remainder of the study, we write x to replace Xt

or ease of exposition.

3.2. Impact of Advertisement and
Platform’s Decisions

In this subsection, we first discuss how an adver-
tisement affects the user’s engagement level. This is
followed by the platform’s decisions on the length

Figure 1. (Color online) A Sample Path of the User
Engagement Level (µ> 0)
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and timing of the advertisement. It is widely accepted
that advertising often annoys the user because it gets
in theway ofwhat viewers or players reallywant (Fan
et al. 2007, Shen and Villas-Boas 2018).3

In this study, we assume that a provider’s revenue
is linear in the length of the advertisement, and there
are two components of the advertisement’s impact on
theuser’s engagement level,which arefixedandvariable
parts.More specifically, if the content provider inserts an
advertisement with the length of l units (i.e., seconds or
bandwidth) during the content, the consequence can
be described as follows.On the one hand, the provider
can generate the revenue rl, where r denotes the
revenue per unit.4 This is known as time-based ad-
vertising in practice, which has gained popularity in
recent years (Ryan 2016). On the other hand, the user’s
engagement levelwill drop from x to x − c0 − cl, where
c0 and c represent the fixed and variable parts of the
user’s dislike toward the advertisement, respectively.

Figure 2 illustrates a sample path of how a user’s
engagement level changes with respect to the ad-
vertisement inserted at time τ. From a practical per-
spective, each individual user has a different value of
c0 and cwhich can be estimated from the individual’s
existing browsing history or running experiments.

Thus, the provider’s decisions are a sequence of
insertion times (τ1, τ2, . . .) and corresponding lengths
of advertisement (l1, l2, . . .) denoted as w � ((τ1, l1),
(τ2, l2), . . .), where τk ≤ τk+1, lk ≥ 0, andXτ−k − l0 − clk ≥ 0.
Note that Xτ−k denotes the user’s engagement level
immediately before watching the advertisement, andXτk

represents the engagement level after the advertise-
ment ends.

We denote the set of all such decisions as W. For a
given strategy w, the dynamics of the user’s en-
gagement level are{

dXt � µdt + σdBt, τi ≤ t< τi+1, i≥ 0
Xτi � Xτ−i − c0 − cli i≥ 1, (1)

where the first line of the equation denotes the update
of the user’s engagement level over time, and the
second line represents the change in user engagement
level when viewing an advertisement. Users will
leave the platform once their engagement drops be-
low the level of 0. To capture the user’s overall ex-
perience over the platform, we assume that the length
of the advertisement is bounded such that the user’s
engagement level will not drop below e0 after viewing
the advertisement.

For any given strategy w ∈W, the provider’s ex-
pected discounted profit at time t corresponding to
the current user’s engagement level at x is

Jw(t, x) � Ex

[∑∞
i�1

e−βτi rli

]
,

where β is the discount factor. To maximize the total
expected discounted profit function V(t, x), the plat-
form needs to find the optimal action strategy w ∈W
such that

V(t, x) � max
w∈W

Jw(t, x).

The platform faces two intertwined trade-offs in sol-
ving this optimization problem. First, regarding the
length of advertisement, it is clear that users prefer
advertisements with relatively short duration; nev-
ertheless, the platform favors longer advertisements
that cangenerate higher revenue.5 The second trade-off
concerns the timing of the advertisement. If the plat-
form inserts the advertisement earlier, then users may
leave the platform earlier or their engagement level
may stay at a low level for an extended period of time,
which prohibits the platform from inserting another
advertisement. If the platform chooses to insert the
advertisement at a later time, then the user may have
already left the platform due to a low engagement
level. Essentially, the platform needs to balance these
trade-offs when determining the timing and length of
the advertisement.
Note that traditional advertisements, such as TV

advertisements, can be treated as a special case in our
setting where the platform makes the decision based
on the average engagement level rather than the in-
dividual dynamic engagement level. From a con-
ceptual level, analogous to the familiar idea of price
discrimination, the methods we propose in this study
allow the platform or content provider to maximize
revenue with discriminatory customization of the
timing and length of the advertisement based on the
behavior of individual users.
In the following analysis, we first assume that the

length of the time horizon, T, is infinite. This as-
sumption not only allows us to characterize the struc-
tural results but also reflects the idea that the game or
TV series can be quite long. For example, users can view

Figure 2. (Color online) A Sample Path of the User
Engagement Level with One Advertisement Inserted
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an infinite number of images posted by another user
on Instagram, or a game player can spend an extended
period of time on a mobile game. Next, we consider an
alternative settingwhere usersmay leave the platformat
any time due to other factors, as well as the scenario in
which the length of the content is bounded. Finally, we
quantify the benefits of the optimal policy by com-
paring it with the prevalent industry policies (i.e.,
preroll, midroll, and mixed strategies) through a simu-
lation study. For convenience, we summarize the nota-
tions used in this study in Table 1. Note that trigger
threshold u, target level U, user’s random departure
time θ, and user’s random departure rate λ are for-
mally defined in the later sections.

4. Optimal Solution and
Managerial Insights

To characterize the structural results and closed-form
solution, we first study the optimal advertisement
insertion policy in an infinite horizon setting and
generate the relevant managerial insights that can be
applied in more general settings.

4.1. Optimal Insertion Policy and Insights
Before we give the solution, we first state some pre-
liminary results to characterize the optimal policy. Let

g(x)≔ eγ1xe−γ2x (2)

with γ1�[−µ+
̅̅̅̅̅̅̅̅̅̅̅̅
µ2+2βσ2√ ]/σ2 and γ2�[µ+

̅̅̅̅̅̅̅̅̅̅̅̅
µ2+2βσ2√ ]/

σ2. Define

p≔ r/c (3)

and x0 ≔
2lnγ2 − 2lnγ1

γ1 + γ2
. (4)

Lemma 1. For g(x) and x0 defined in (2) and (4), for any
p> 0 and A ∈ (0, p/g′(x0)), there exists a unique pair of
(U(A), u(A)) such that U(A)< x0 < u(A):

g′(x)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

>
p
A

for x<U(A)

� p
A

for x � U(A)

<
p
A

forU(A)< x<u(A)

� p
A

for x � u(A)

>
p
A

for x> u(A), (5)

and

g′′(x)
⎧⎪⎪⎪⎨⎪⎪⎪⎩
< 0 for x< x0
� 0 for x � x0
> 0 for x> x0, (6)

U
′ (A)> 0. (7)

All proofs are provided in the Online Appendix. Note
thatA is a constant in differential equations and can be
uniquely determined by Equations (10), (11), and (12)
in Lemma 2.Weutilize the result of Lemma 1 to derive
Lemma 2, which characterizes the parameters that are
used to describe the optimal policy.

Lemma 2. For any p > 0, c0>0, γ1 � [−µ+ ̅̅̅̅̅̅̅̅̅̅̅̅̅
µ2+2βσ2

√ ]/
σ2, γ2 � [µ + ̅̅̅̅̅̅̅̅̅̅̅̅̅

µ2 + 2βσ2
√ ]/σ2, and x0 defined in (4), there

exists unique (u,U,A) with
U< x0 < u, U <u − c0 (8)

and
A> 0, (9)

such that

Aeγ1u − Ae−γ2u � Aeγ1U − Ae−γ2U + p(u −U − c0), (10)

A
(
γ1e

γ1u + γ2e
−γ2u

) � p, (11)

A
(
γ1e

γ1U + γ2e
−γ2U

) � p. (12)

In addition, for g(x) defined in (2), we have

g′′(U)< 0 and g′′(u)> 0. (13)

Note that u and U represent the trigger threshold to
insert the advertisement and the target level of user
engagement after the advertisement, respectively.
Essentially, Lemma 2 not only characterizes the pa-
rameters (u,U) that will be used in Theorems 1 and 2
but also proves the existence and uniqueness of these
parameters. Note that (u,U) determined in Lemma 2
are functions of (µ,σ, β, p, c0). We analyze the opti-
mization problems by separating them into two cases:
U≥ e0 and U< e0. In the first case, the (endogenous)
target levelU is greater than or equal to the prespecified

Table 1. Parameters and Decision Variables

Symbol Definition

Xt User’s engagement level at time t
µ Trend of user’s overall engagement level along the time
σ Volatility of the stochastic change
τi Insertion time of i advertisement
li Length of i advertisement
e0 Prespecified lower bound of user engagement level

after the advertisement
c0 Fixed part of user’s dislike toward the advertisement
c Variable part of user’s dislike toward the advertisement
r Unit revenue of the advertisement
A and A1 Constants in differential equations
β Discount factor
u Trigger threshold to insert the advertisement (decision

variable)
U Target level of the user engagement level after the

advertisement (decision variable)
θ User’s random departure time, following an

exponential distribution with parameter (λ)
λ User’s random departure rate
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(exogenous) lower bound of the engagement level
e0 (i.e., Theorem 1). In the second case, the target level
U is less than the prespecified lower bound. As a
result, instead of allowing the engagement level to
drop to the target level, the platform will only agree
with the advertisement length such that the engagement
level decreases to exactly the prespecified engagement
level, e0 (i.e., Theorem 2). The higher the e0 platform
sets, the more the platform cares about the user’s
experience on the platform, and vice versa.

Let us define

Θ≔
{(µ,σ, β, p, c0, e0) :U(µ, σ, β, p, c0) ≥ e0

}
. (14)

Note thatwhen the parameters (µ, σ, β, p, c0, e0) ∈Θ, we
have U � U(µ,σ, β, p, c0) ≥ e0. This corresponds to the
first case, and we provide the optimal solution in
Theorem 1. When the parameters (µ, σ, β, p, c0, e0) ∉Θ,
we have � U(µ,σ, β, p, c0)< e0, which corresponds to
the second case. The optimal solution for this case is
provided in Theorem 2.

Theorem 1. When the target level U is greater than or equal
to the prespecified lower bound of the engagement level e0
(i.e., (µ, σ, β, p, c0, e0) ∈Θ), then the value function is

V(t, x) � e−βt
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Aeγ1x − Ae−γ2x
for x< u (waiting region)

Aeγ1U − Ae−γ2U + p(x −U − c0)
for x≥ u (action region), (15)

where p � r/c, γ1 � [− µ + ̅̅̅̅̅̅̅̅̅̅̅̅̅
µ2 + 2βσ2

√ ]/σ2,γ2 � [µ +̅̅̅̅̅̅̅̅̅̅̅̅̅
µ2 + 2βσ2

√ ]/σ2, and uUA are defined in Lemma 2.

Theorem 1 characterizes the structure of the opti-
mal policy. We begin by discussing the following
property of the optimal policy.

Proposition 1. When the target level U is greater than or
equal to the prespecified lower bound of the engagement
level e0, then the optimal action strategy under the infinite
horizon is a threshold policy that delays the insertion of the
advertisement until the user’s engagement level x reaches the
trigger threshold u and then plays an advertisement with
length (u −U − c0)/c.

Most importantly, we show that a threshold policy
is an optimal policy among all classes of policies. This
is an important result both theoretically and practi-
cally. Although one may think that a dynamic com-
plicated policy should be optimal, here we analyti-
cally prove that a simple threshold policy can perform
as well as a complex one, if it exists. Essentially, the
platform only needs to insert the advertisement when
the user’s engagement level reaches the trigger thresh-
old, u, and then the user will view an advertisement
with length (u −U − c0)/c such that the user’s en-
gagement level drops to the target level, U.

Generally speaking, the parameters used to char-
acterize the trigger threshold u and target level U
(i.e., µ,σ, β, r, c0, c) are different for different users, as
every user has his or her own distinct taste for the
content and dislike toward the advertisement. The
parameters heavily relying on individual users (i.e.,
µ and σ) can be estimated through their browsing
behaviors or by running experiments. For the pa-
rameters that are advertisement specific (i.e., c0 and c),
the platform can estimate these through running a
focus group of users. We provide a visual illustration
of the implementation of this policy in Figure 3.
In the aforementioned illustrative example, the

user has a positive attitude toward the content that is
viewed or played, which is reflected by the upward
trend of the user’s engagement level. Tomaximize the
revenue, the platform inserts the advertisement when
theuser’s engagement level reaches the trigger threshold,
u. Further, the length of advertisement is bounded
such that the user’s engagement level will not drop
below the target level,U. Note that if the user’s initial
engagement level is sufficiently high (i.e., x0 > u), our
policy states that the platform should play the ad-
vertisement at the very beginning (i.e., preroll strat-
egy), which is consistent with the practice of many
platforms, such as YouTube. The difference here is
that the platform should insert the advertisement
only if the user’s interest is high enough (i.e., high
initial engagement level) under our policy, whereas
the platform always inserts the advertisement at the
very beginning regardless of the user’s engagement
levels under the current business practice. This may
be suboptimal, driving away many valuable users.
One may be concerned that this proposed policy

could affect the user’s overall experience of the plat-
form, as the platform precisely inserts the adver-
tisement at the climax of the user’s engagement with
the content. Indeed, the insertion of the advertisement
will mitigate the user’s enjoyment of the content.
However, we show that the leaving rate is actually

Figure 3. (Color online) Illustration of the Optimal Policy
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much lower in the proposed policy compared with
the industry standard policies. Our policy mainly
applies to platforms,websites, or appswhose revenue
is solely driven by advertisement rather than sales, as
the user’s experience should be prioritized if sale of
content is the key source of revenue. Further, with the
surge of the subscription pricing model, our policy
also contributes to the adoption of the user’s sub-
scription because our proposed policy may drive some
users to pay for the service in order to avoid behavioral
advertisements.

The optimal policy described here has many ad-
vantages, including easy implementation and improved
profitability. Later, we demonstrate the benefits of this
policy by comparing it with the existing popular ad-
vertisement policies, such as preroll,midroll, and amix
of the two. We provide the crux of the algorithm that
can compute u and U efficiently in the proof of
Proposition 1 in the Online Appendix. Next, we find
that the target level U is less than the prespecified
lower bound of the engagement level e0. In this case,
the platform should limit the advertisement length
such that the consumer’s engagement level does not
drop below the level e0 after watching the advertisement.

Theorem 2. When the target level U is less than the pre-
specified lower bound of the engagement level e0 (i.e., (µ, σ,
β, p, c0, e0) ∉Θ), then the value function becomes

V(t, x) � e−βt
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A1eγ1x − A1e−γ2x
for x< u1 (waiting region)

A1eγ1e0 − A1e−γ2e0 + p(x − e0 − c0)
for x≥ u1 (action region),

where p � r/c, γ1 � [− µ + ̅̅̅̅̅̅̅̅̅̅̅̅̅
µ2 + 2βσ2

√ ]/σ2, γ2 � [µ+̅̅̅̅̅̅̅̅̅̅̅̅̅
µ2 + 2βσ2

√ ]/ σ2, u1 is decided by

eγ1u1 − e−γ2u1 � eγ1e0 − e−γ2e0

+ (
γ1e

γ1u1 + γ2e
−γ2u1

)(
u1 − e0 − c0

)
, (16)

and

A1 � p
γ1e

γ1u1 + γ2e
−γ2u1

. (17)

Theorem 2, similar to the previous theorem, charac-
terizes the structure of the optimal policy. In the
following proposition, we highlight that the optimal
length of advertisement does not always depend on
the target level U.

Proposition 2. When the target level U is less than the
prespecified lower bound of the engagement level e0, then the
optimal action strategy under the infinite horizon is to wait
until the user’s interest level x reaches u1 and then add an
advertisement with length (u1− e0− c0)/c.

Proposition 1 states that the advertisement length
should be (u−U− c0)/c, which is a function of the

target level U. One may intuitively think that the
optimal advertisement length should always be de-
termined by the target level, as it controls the con-
sumer engagement level after watching the adver-
tisement. However, Proposition 2 shows that the
optimal policy does not always depend on the target
level U. Although the structure of the optimal policy
is similar to that under Proposition 1, the target level
U is now replaced by the prespecified lower bound of
the user engagement level e0. The intuition of this
result is that the optimal target level U is less than the
prespecified lower bound e0. To ensure the user’s
overall experiencewith the platform, the platform has
to change the optimal length of the advertisement
from (u −U − c0)/c to (u1 − e0 − c0)/c such that the
engagement level drops to the prespecified engage-
ment level e0 rather than the optimal target level U.
From a practical perspective, this result suggests that
the platform needs to make a trade-off between the
length of the advertisement and the service level. If
the platform puts high emphasis on the user’s experi-
ence, it should play a relatively shorter advertisement.

4.2. Additional Managerial Insights
In this subsection, we derive additional managerial
insights by exploring how different parameters affect
the optimal insertion policy. We are able to derive the
impacts of a fixed decrease in engagement level
(i.e., c0) and the discount factor (i.e., β) analytically.
These results are presented in Sections 4.2.3 and 4.2.4,
respectively. However, because of the analytical in-
tractability, the impacts of the volatility (i.e., σ) and
the drift term (i.e., µ) are analyzed numerically in
Sections 4.2.1 and 4.2.2, respectively.

4.2.1. The Volatility. Recall that σ represents the mag-
nitude of the volatility of the stochastic change in the
consumer’s engagement level. We reach the following
observation from extensive numerical analysis.

Observation 1. As the volatility parameter σ increases,
both the optimal trigger threshold and advertisement
length will increase as well.

Figure 4 illustrates the impact of the volatility σ in
the optimal insertion policy. If the volatility becomes
higher, the consumer’s engagement level will evolve
more volatilely. It is not obvious how the optimal
policy will change in relation to an increase in vola-
tility, as two opposite dynamics are possible. On the
one hand, as volatility increases, the consumer’s en-
gagement level has a higher chance of reaching zero
early, in which case the consumer will leave the
platform. This seems to suggest that we should set a
lower trigger threshold, such that the platform can
generate revenue from these consumers before they
leave. On the other hand, as volatility increases, it
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takes less time for the consumer’s engagement level to
reach the trigger threshold. Consequently, the platform
should behave more patiently and set a higher trigger
threshold to insert a longer advertisement. Interest-
ingly, we find that the second scenario dominates the
first one. This suggests that as the volatility level in-
creases, the managers of the platform should set the
optimal trigger threshold higher and the length of ad-
vertisement longer.

4.2.2. The Drift Term. Recall that the drift term µ re-
presents the average trend that the user is attracted by
the content. As discussed earlier, we study the impact
of this parameter on optimal insertion policy nu-
merically due to analytical challenges.

Observation 2. As the drift term µ increases, both the
optimal trigger threshold and advertisement length
will increase as well.

Figure 5 presents the impact of the trend of en-
gagement level µ in the optimal insertion policy. Note
that we have conducted extensive numerical analyses
and find that our results are robust to a variety of dif-
ferent parameter settings. From the numerical studies,
we observe that both the trigger threshold and the ad-
vertisement length increase as the trend of engagement
level increases. This is because, if the user has a high level
of interest in the content, it is more likely that his or her
engagement level will increase over time. Therefore, it is
optimal for the platform to behave patiently (by setting a
higher trigger threshold) and insert a longer advertise-
ment. From a managerial perspective, this result sug-
gests that the platform should have a longer version of
the advertisement when it expects that the users will
have higher engagement with the content.

4.2.3. Fixed Decrease Level. We are able to charac-
terize analytically how the fixed decrease in level c0
influences the optimal insertion policy. The detailed
results and proofs are presented in the Online Ap-
pendix. For simplicity, we only illustrate and discuss
the results here. We find that as the fixed decrease
level c0 increases, the trigger threshold uwill increase,

the target level U will decrease, and the optimal
advertisement length will increase.
We illustrate the impact of the fixed decrease level

c0 in Figure 6. The results here are in line with our
expectations. Specifically, as the fixed decrease level
c0 increases, we note that the platform behaves more
patiently and inserts a longer advertisementwhen the
opportunity arises. The intuition of this result is that,
as the fixed decrease level c0 increases, the consumer
becomes more annoyed each time the advertisement
is played, so it becomesmore costly for the platform to
insert the advertisements, as the consumer is more
likely to leavewhen the c0 level is high. Consequently,
the optimal strategy facing the platform is to wait
until the consumer becomes more engaged with the
content, then insert a longer advertisement. The result
here suggests that the platform should target users
with varying thresholds and tolerance of advertise-
ment lengths, because different users have different
levels of tolerance for advertisements.

4.2.4. Discount Factor. The parameter β represents the
discount factor.6 We are able to analytically prove
that as β increases, both the trigger threshold u and the
target level U decrease, and the optimal advertise-
ment length decreases. Similar to c0, the detailed results
and proofs are presented in the Online Appendix, and
here we simply illustrate and discuss the results.
Figure 7 displays the impact of the discount factor β

in the optimal insertion policy. As the discount rate β
increases, we note that the platform behaves less pa-
tiently and inserts a shorter advertisement when the
opportunity arises. This is because, as β increases, the
platform places more value on the current profit as
opposed to futureprofit.As a result, theplatformprefers
to generate revenue sooner rather than later. From a
managerial perspective, when platforms have relatively
long content, they should adjust the thresholds and
advertisement lengths based on their discount factor.

5. Finite Horizon
In the previous section, we analyzed scenarios where
the planning horizon could be regarded as infinite.

Figure 4. (Color online) Impact of Volatility σ

Figure 5. (Color online) Impact of Drift Term µ
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In this section, we now focus on those scenarios for
which the planning horizon can be regarded as finite by
analyzing two alternative cases. In Section 5.1, we in-
vestigate the scenario in which users can leave the
platform randomly during the content (i.e., stochas-
tic horizon). In Section 5.2, we study the case in which
the length of the planning horizon is finite and
deterministic.

5.1. Stochastic Horizon
In this subsection, we consider the scenario in which
the user can leave the platform unexpectedly. In
addition to a low engagement level, the user may re-
ceive an important phone call, or the device’s battery
may be depleted. From the modeling perspective, we
assume that, regardless of engagement level, the user
may leave at any random time θ, which follows an
exponential distribution with parameter λ. Thus, the
expected length of this horizon is E[τ] � 1/λ, and the
larger λ is, the smaller the expected horizon E[τ]
becomes. Note that, in this setting, the user can leave
the platform because of either a low engagement level
or a random occurrence. Similar to the basemodel, we
solve the problem in two separate cases. Due to the
similarity of these two cases, we first state the properties
and then provide the discussion based on the two cases
together.

Theorem 3. When the target level U is greater than or equal
to the prespecified lower bound of the engagement level e0
(i.e., (µ, σ, β + λ, p, c0, e0) ∈Θ), the value function becomes

Vd(t, x)�e−βt
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Adeγ1,dx − Ade−γ2,dx

for x<ud (waiting region)
Adeγ1,dUd −Ade−γ2,dUd + p(x −Ud − c0)

for x≥ud (action region),
where p � r/c; γ1,d � [−µ+ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

µ2+2(β+λ)σ2√ ]/σ2; γ2,d �
[µ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

µ2 + 2(β + λ)σ2√ ]/σ2; and ud, Ud, Ad are defined in
Lemma 2 with γ1,d and γ2,d replacing γ1 and γ2.

Theorem 3 characterizes the structure of the opti-
mal policy when the horizon is stochastic. We begin by
discussing the following property of the optimal policy.

Proposition 3. When the target level U is greater than or
equal to the prespecified lower bound of the engagement level
e0 (i.e., (µ,σ, β + λ, p, c0, e0)∈Θ), the optimal action strat-
egy under the stochastic horizon is to delay the insertion of
the advertisement until the user’s engagement level x reaches
ud and then to insert an advertisement whose length equals
(ud −Ud − c0)/c. In addition, we find that ud <u, where u is
the trigger threshold defined in Theorem 1.

Similar to Proposition 1, we note that the optimal
policy with the stochastic horizon is based on a
threshold policy. The platform inserts the advertise-
ment when the user’s engagement level reaches the
trigger threshold. When the target level is less than
the prespecified lower bound, we have the following
theorem.

Theorem 4. When the target level U is less than the pre-
specified lower bound of the engagement level e0 (i.e., (µ,σ,
β + λ, p, c0, e0) ∉Θ), the value function becomes Vd(t, x) �
e−βtψd(x) with

ψd(x) �
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A1,deγ1,dx − A1,de−γ2,dx

for x<u1,d (waiting region)
A1,deγ1,de0 − A1,de−γ2,de0+ p(x − e0 − c0)

for x≥u1,d (action region),
where p � r/c, γ1,d � [−µ+ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

µ2+2(β+λ)σ2√ ]/σ2, γ2,d �
[µ + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

µ2 + 2(β + λ)σ2√ ]/σ2, and u1,d is determined by

eγ1,du1,d − e−γ2,du1,d � eγ1,de0 − e−γ2,de0 + (
γ1,de

γ1,du1,d

+ γ2,de
−γ2u1,d

)(
u1,d − e0 − c0

)
(18)

and

A1,d � p
γ1,de

γ1,du1,d + γ2,de
−γ2u1,d . (19)

Theorem 4 characterizes the structure of the optimal
policy. Once again, we note that the optimal length of
advertisement does not need to depend on the target
level U, which leads to the following property.

Proposition 4. When the target level U is less than the
prespecified lower bound of the engagement level e0 (i.e.,
(µ, σ, β + λ, p, c0, e0) ∉Θ), the optimal action strategy under

Figure 7. (Color online) Impact of Discount Factor β

Figure 6. (Color online) Impact of Fixed Decrease Level c0
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the stochastic horizon is to delay the insertion until the user’s
interest level x reaches ud and then to add an advertisement
with length (u1,d − e0 − c0)/c. In addition, we find that
u1,d <u1,where u1 is the trigger threshold in Theorem 2.

The discussion here applies to both Propositions 3
and 4.When the horizon becomes stochastic, onemay
intuitively guess that the optimal policy should be-
come more complicated, as there is additional un-
certainty involved. However, we find that this is not
the case here. We prove that, similar to Propositions 1
and 2, the optimal policies with the stochastic horizon
are still based on a threshold policy, and they are
optimal among the class of all policies. The key dif-
ference between the infinite horizon case and the
stochastic horizon case is that we substitute β with
β + λ in calculating the γ1,d and γ2,d (corresponding to
γ1 and γ2 in Theorems 1 and 2).

Nevertheless, and interestingly, we find that the
platform inserts the advertisement more urgently
when the user can leave randomly. To understand the
intuition of this result, recall that the larger the λ is,
the smaller the expected random departure time E[τ]
becomes, which suggests that the user is more likely
to leave randomly before the content ends. As a result,
compared with the infinite horizon case, the platform
becomes less patient in terms of the timing of the
advertisement insertion (i.e., ud < u in Proposition 3
and u1,d < u1 in Proposition 4).

5.2. Finite Planning Horizon
In this subsection, we discuss the optimal adver-
tisement insertion problem with a finite and deter-
ministic planning horizon. There are many practical
situations that fit this setting; for example, the user
can only watch one new episode of a popular TV
series per week due to the release frequency.

It is worthwhile to point out that the key difference
between the solutions to infinite and finite planning
horizon cases lies in the fact that neither the trigger
threshold nor the target level depends on time in the
infinite horizon case, whereas either may depend on
time in the finite horizon setting, thereby significantly
increasing the complexity of the problem. Further, it is
extremely difficult to find closed-form solutions for
the stochastic impulse control problem in a finite plan-
ning horizon.7 As a result, we resort to extensive nu-
merical studies to analyze this case.

Observation 3. Under the finite horizon, the optimal
trigger level u will first decrease, then increase, and
finally decrease as the time approaches the end of the
planning horizon. This is a result of the trade-off be-
tween the number of advertisements and advertise-
ment length.

Figure 8 illustrates how the trigger threshold u and
target level U change along with time.8 Interestingly,

we observe that the optimal trigger level u first de-
creases, then increases, and finally decreases as the
time approaches the end of the planning horizon. This
result is robust with a variety of parameter settings.
Intuitively, one may think that the platform might
become less patient (i.e., decreased optimal trigger
threshold u(t)) to insert the advertisement when the
time approaches the end of the planning horizon, as
the platform would lose the opportunity to insert any
further advertisement. However, we find that it is
actually optimal for the platform to first increase and
then decrease the trigger threshold when approach-
ing the end of the planning horizon. The platform
needs to reach a balance between the insertion time
and the length of each advertisement. Specifically,
when there is sufficient time left (i.e., in the beginning
of the planning horizon), the platform initially plans
to insert multiple episodes of the advertisement.
However, if the user’s initial engagement level stays
low and the remaining planning horizon becomes
shorter, the platform fears that it has fewer oppor-
tunities to insert the advertisement. As a result, the
platform prefers to insert a longer advertisement in-
stead of a shorter one, which is reflected by the in-
crease in the optimal trigger threshold u(t). Finally, if
the planning horizon approaches the end, the plat-
form has to reduce the trigger threshold because
it has no time to wait toward the end of the plan-
ning horizon.
To confirm our intuition, we conduct further analysis.

With everything else being equal, we now restrict the
platform to inserting a maximum of n advertisements
during the finite planning horizon. Figure 9 illustrates
the optimal trigger threshold u(t) when n � 1 and
n � 2. When the platform is only allowed to insert one
advertisement during the content (corresponding to
the left panel), we observe that the optimal trigger

Figure 8. (Color online) Optimal Trigger Thresholds and
Target Levels in Finite Planning Horizon
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threshold u(t) keeps decreasing. This result is in line
with our conjecture that the platform becomes less
patient to insert the advertisement when the time
approaches the end of the planning horizon, and the
platform loses the opportunity to insert any further
advertisement.When the platform is allowed to insert
more than one advertisement (i.e., n � 2 in the right
panel), we find that the optimal trigger threshold u(t)
exhibits the pattern that we observed before. That
is, the optimal trigger threshold u(t) first decreases,
then increases, and finally decreases again. This result
has interesting implications for the platform man-
ager regarding when to insert the advertisement.
The optimal trigger threshold is a result of a balance
between the advertisement length and the number
of insertions.

6. Comparison with Prevalent Policies and
Parameter Estimation

In this section, we first illustrate the outcomes of our
proposed policies by comparing them with several
practically prevalent advertisement insertion policies
through a simulation study.9 We then discuss how to
estimate relevant parameters.

6.1. Comparison with Prevalent Policies
We focus on the case where the planning horizon is
finite and deterministic, as most practical examples
apply. The benchmark case is the proposed threshold
policy. We compare this policy against the industry
standard policies (i.e., preroll, midroll, and a mix of
both placement strategies) in terms of profitability,
leaving rate, and total number of advertisements
placed. In practice, platforms typically adopt either
preroll,midroll, postroll, or amix of these strategies to
place their advertisement. In the preroll placement
strategy, the advertisement plays before the start of
the content. Midroll placement allows the platform to
play the advertisement during the content, which is
similar to the schedule that viewers are accustomed
to on broadcast television. In contrast, the postroll

placement simply means that an advertisement plays
after the user views the content. We do not explicitly
consider the postroll strategy in this study, because
consumers are not likely to watch the advertisement
after they have viewed the desired content. Further,
postroll advertisement has the lowest completion rate
in practice (Krishnan and Sitaraman 2013). Rather, we
consider the postroll placement strategy indirectly. If
the user views the content by using a playlist, a
postroll advertisement can be considered as a special
case of the midroll placement strategy. If users are
interested in the upcoming content, they will stay
through the advertisement to engage in what follows.
In the simulation study,we first consider the preroll

placement strategy (i.e., preroll), where the adver-
tisement is placed before the start of the content. Next,
we consider the midroll strategy, in which the plat-
form inserts one or more advertisements in the mid-
dle of the content with the same interval between
them (i.e., midroll and midroll 2). Further, we also
examine the mixed strategy of preroll and midroll,
where the platform places advertisements at the very
beginning as well as in the middle of the content
(i.e., mix 2 and mix 3). We also consider a random
strategy where the platform can insert the adver-
tisement at any time during the content (i.e., random).
Finally, we consider an alternative setting (i.e., sub-
optimal case) where we set the trigger threshold ut
and target level Ut as fixed. We characterize the fixed
levels by assuming that the planning horizon is in-
finite, which allows us to use the closed-form solution
to impute both levels. This method is clearly sub-
optimal compared with the case when trigger thresh-
old ut and target level Ut are dynamic in the finite
planning horizon, but it is computationally appealing
as the platform only needs to calculate once for each
individual consumer, and the equations characterizing
the thresholds in Proposition 1 can be readily solved.
The objective here is to examinewhether this heuristic
method is good enough for practical use.
Without loss of generality, we allow the user’s

initial engagement level, X0 ~Uniform(0,5), which re-
flects the fact that distinct consumers have different
expectations for the content. We have also verified
that our results are robust to a variety of parameter
settings by conducting extensive analysis. For expo-
sition, we next illustrate one representative case with
the following parameter settings: {β � 0, µ � 0.1,
σ � 0.2, r � 1, c0 � 0.6, c � 1, e0 � 0.2, λ � 0.05}. In
this experiment, each replication simulates 30 min-
utes of content length in which the consumer’s en-
gagement level updates every second. We summa-
rize the results of profitability and leaving rate in
Tables 2 and 3, respectively.
There are several important observations from the

aforementioned simulation study.

Figure 9. (Color online) Optimal Thresholds when There Is
a Restriction on the Number of Insertions
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Observation 4. Compared with the prevalent policies
(i.e., preroll, midroll, and mixed strategy), the pro-
posed policy in our study can generate a much higher
profitability.

We note that the proposed optimal policy yields a
much better outcome in terms of profitability compared
with the industry standard policies. To illustrate, when
the advertisement length is l � 3.0, the midroll place-
ment strategy outperforms the other standard strat-
egies, but it can only generate 56.40% of the revenue
from the optimal policy. Further, for the same ad-
vertisement length, although the mix 3 strategy will
play three advertisements during the course of the
content, it only yields 44.14% of the revenue against
the optimal policy of playing 2.48 advertisements
during the content on average. As illustrated in Table 2,
this result is robust to a wide variety of parameter
settings. The timing and length of the advertisement
make a significant impact on revenue, and our pro-
posed optimal policy can fully operationalize along
these two key dimensions and customize based on an
individual consumer’s behavior.

Recently, we have observed that many platforms
are testing different advertisement insertion policies.

For example, Facebook is experimenting with preroll
video advertising on its video-on-demand service,
“FacebookWatch,” after a longtime ban of the preroll
format (Sloane 2017). Google is limiting the use of
preroll advertisement by switching more toward the
midroll placement strategy on YouTube (Reale 2017).
One of the major reasons to test these alternative
policies is because the platforms are unclear on which
policy can yield higher profitability. Our analysis here
sheds light on this issue. We illustrate that the pro-
posed policies can yield a much higher profitability
compared with the prevalent industry policies. Thus,
one natural and intriguing question arises: Does this
increased profitability come at the cost of lowering the
user’s experience on the platform? The answer to this
question will be not only theoretically interesting but
also critical to the managers in the relevant industries
as they strive to deliver a better user experience. We
summarize our finding in the following observation.

Observation 5. Compared with the prevalent policies,
the proposed policy results in a lower leaving rate.

Note that there are three different factors contrib-
uting to the leaving rate. The first is a low engagement

Table 2. Profitability and Number of Advertisement of the Simulation Results

Ad length Preroll Midroll Midroll 2 Mix 2 Mix 3 Random Suboptimal Optimal

1.0 13.43% (1) 9.63% (1) 19.66% (2) 20.56% (2) 27.83% (3) 10.03% (1) 88.59% (2.15) 100% (2.41)
1.5 18.96% (1) 14.59% (1) 29.86% (2) 28.09% (2) 37.36% (3) 15.22% (1) 88.97% (2.18) 100% (2.44)
2.0 23.40% (1) 19.47% (1) 39.01% (2) 33.83% (2) 43.94% (3) 19.69% (1) 88.57% (2.23) 100% (2.45)
2.5 27.86% (1) 24.94% (1) 48.10% (2) 38.21% (2) 46.70% (3) 24.78% (1) 88.37% (2.19) 100% (2.48)
3.0 30.00% (1) 30.09% (1) 56.40% (2) 38.86% (2) 44.14% (3) 29.13% (1) 88.79% (2.22) 100% (2.48)
3.5 33.93% (1) 34.50% (1) 62.32% (2) 41.23% (2) 44.12% (3) 33.22% (1) 88.23% (2.10) 100% (2.37)
4.0 34.32% (1) 38.83% (1) 66.54% (2) 38.52% (2) 38.72% (3) 36.76% (1) 89.20% (2.13) 100% (2.38)
4.5 34.43% (1) 44.89% (1) 67.75% (2) 34.99% (2) 35.01% (3) 39.74% (1) 88.89% (2.17) 100% (2.42)

Notes. Ad length only applies to preroll, midroll, midroll 2, mix 2, mix 3, and random cases, and denotes the difference between engagement
level before and after each advertisement. It is proportional to the physical advertisement length. Midroll denotes the placement of
advertisement at the middle of the content, whereas midroll 2 denotes the placement of advertisement at one-third and two-thirds of the
content. Mix 2 represents the placement strategy where the platform inserts the advertisement at the very beginning as well as at the middle of
the content, andmix 3means the advertisement placement at the very beginning, at one-third of the content, and at two-thirds of the content. The
percentagemeans the proportion of the revenue that the placement strategy can generate compared with the optimal strategy in the last column.
The number in parentheses denotes the total number of advertisements played during the content.

Table 3. Leaving Rate of the Simulation Results

Ad length Preroll Midroll Midroll 2 Mix 2 Mix 3 Random Suboptimal Optimal

1.0 30.10% 4.10% 4.50% 30.10% 30.30% 6.10% 5.50% 7.40%
1.5 40.10% 4.50% 5.10% 40.10% 41.40% 7.70% 5.60% 8.00%
2.0 48.10% 3.60% 5.50% 48.10% 51.20% 8.30% 4.40% 7.60%
2.5 60.00% 3.70% 8.50% 60.50% 66.80% 9.40% 4.50% 6.20%
3.0 71.70% 5.10% 17.80% 72.50% 81.40% 13.90% 5.50% 7.70%
3.5 79.30% 6.40% 27.00% 81.00% 89.80% 20.20% 4.60% 6.10%
4.0 88.80% 7.40% 38.30% 90.90% 96.30% 21.70% 5.40% 6.80%
4.5 98.70% 11.40% 52.20% 98.80% 99.70% 26.00% 4.30% 6.00%

Notes. The percentage means the proportion of the consumers who leave during the content due to
either the low engagement level of stochastic change or low engagement level of watching the
advertisement.
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level due to stochastic change, where users may not
enjoy the content. The second is a lengthy adver-
tisement that drives away users. The third factor is the
random departure of the user (i.e., stochastic horizon)
due to some arbitrary causes that are irrelevant to the
engagement level or advertisement length. We report
the sum of the first two factors in Table 3, because the
third factor applies equally across all policies, whereas
the first two are directly influenced by placement pol-
icies. We observe that both the suboptimal and the
optimal policy result in a leaving rate of less than 8% in a
wide variety of parameter settings. Our result is also
consistent with the empirical observation that midroll
advertisements produce a higher completion rate
(i.e., lower leaving rate) than preroll advertisements
(Krishnan and Sitaraman 2013). Consumers are more
engaged with the content after spending some time
viewing it but are less engaged at the beginning of the
content. Thus, both suboptimal and optimal policies
lead to a lower leaving rate comparedwith the industry
standardpolicies.More importantly, our results suggest
that increased profitability does not come at the cost of
the user’s experience with the platform.

Observation 6. The suboptimal policy generated from
the infinite horizon can be an efficient heuristic for the
optimal policy.

Recall that, in the suboptimal policy, we treat the
planning horizon as infinite, which allows us to use
the fixed trigger threshold ut � u and target level
Ut � U to determinewhen to place the advertisement.
Compared with the optimal policy, this method is
computationally more efficient, as the platform only
needs to calculate once, in contrast with the optimal
policy where the platform has to constantly update
the trigger threshold ut and target level Ut as time
passes. We note that the suboptimal policy can out-
perform all of the industry standard policies and
achieve nearly 90% of the revenue from the optimal
policy. Thus, we argue that the suboptimal policy can
serve as an efficient heuristic for the optimal policy in
most practical situations.

To further understand why and when the sub-
optimal policy can be a viable substitute for the op-
timal policy, we consider the various content lengths,
which leads to the following observation.

Observation 7. When the content length is long, the
suboptimal policy can approximate the optimal policy
well.

We have varied the content lengths and find that
our observation is robust across different parameter
settings. For exposition, we illustrate the thresholds
and advertisement length when the content length is
set equal to 180 minutes. From Figure 10, we observe
thatwhen the remaining time is sufficiently long, both
the trigger threshold and the target level from the
infinite horizon (i.e., suboptimal policy) are very close
to those from the finite horizon (i.e., optimal policy),
so the optimal advertisement length is very similar for
both cases. This pattern continues until the content
approaches the end of the horizon, at which point the
trigger thresholds and advertisement length from
the infinite horizon begin to differ significantly from
those in the finite horizon. To illustrate, in a three-
hour time window, the optimal trigger thresholds
and advertisement length from the finite horizon are
nearly the same as those from the infinite horizon for
three-quarters of the time period. In more than half of
the remaining one-quarter of the time period, the
trigger thresholds and advertisement length from
the infinite horizon are very similar to those from the
finite horizon. Thus, the suboptimal policy adopting
the thresholds from the infinite horizon can approxi-
mate the thresholds from the finite horizon very well,
especially when the finite horizon is long.
In summary, the timing and length of the adver-

tisement play a significant role in determining the
platform’s revenue. The proposed policies in this
study can not only generate a much higher revenue
but also retain a higher proportion of consumers
compared with the current industry standard poli-
cies. In addition, we find that the suboptimal policies
can be efficient heuristics for the optimal policy, es-
pecially for longer content.

Figure 10. (Color online) Optimal Trigger Thresholds, Target Levels, and Advertisement Length for Both Infinite and
Finite Horizons
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6.2. Parameter Estimation
In order to implement the proposed policy, the platform
needs to estimate the parameters used in this study.
Generally speaking, the parameters used to charac-
terize the trigger threshold u and target level U (i.e.,
µ,σ, β,λ, r, c0, c) are different for different users, as
everyone has his or her own distinct taste for the
content and dislike toward the advertisement. We
next outline how the platform can estimate these
individual’s parameters.

To begin with, µ is the trend term, which measures
the user’s overall engagement level of the content,
and σ is volatility reflecting the magnitude of the
stochastic change. After the platform tracks indi-
vidual consumers’ engagement level with a certain
genre of the content (e.g., romance, action, and war),
the platform can gather the data and discretize the
continuous path by taking sufficient data points along
the path. Then, the platform can run a simple linear
regression analysis with engagement level being the
dependent variable and time being the independent
variable. The derived slope coefficient can be used to
estimate the trend term, µ, whereas the root mean
squared error (RMSE) can be used to estimate the
volatility term, σ. For each individual consumer, we
need to estimate his or her parameters toward a
certain genre; then, the platform can use these esti-
mates to implement the customized advertisement
based on different content.

The financial discount factor is denoted as β. When
the content is relatively long or repeated (i.e., online
games), the discount factor simply equals the com-
pound interest rate, which is determined by the firm’s
financial capacity. Certainly, the length of most content
is relatively short, and the consumer may leave the
platform randomly (i.e., finite horizon with stochas-
tic leave), which requires us to estimate another pa-
rameter, λ, in addition to the discount factor to
characterize the thresholds. Recall that in the finite
horizon with stochastic leave case, the user leaves
the platform following an exponential distribution with
parameter λ. That is, on an expectation, the user stays
on the platform for a duration of E[τ] � 1/λ, even
when the user’s engagement level is strictly positive.
Thus, we only need to track the user’s engagement
with the platform several times and take the average of
the time when the user leaves with his or her engage-
ment still being positive to estimate the parameter λ.

Next, we discuss how the platform can estimate
r, c0, and c. Note that r is the revenue for the adver-
tisement per unit, which is fully controlled by the
platform or advertisement agency. The higher the
value is, the more expensive the advertisement be-
comes. The platform can either charge a uniform
price to all the advertisers or charge a different value
to different advertisers based on consumer group.

The fixed and variable parts of a user’s dislike toward
the advertisement are represented by c0 and c, re-
spectively. Both of the values can be estimated from
the existing browsing history or by running experi-
ments on a focus group of users. Specifically, the
platform should track a user’s engagement level be-
fore the insertion of the advertisement x1 and en-
gagement level after the advertisement x2. Then, the
platform can run a simple linear regression with x2 − x1
being the dependent variable and length of the ad-
vertisement being the independent variable. The
derived slope coefficient is the estimate of c, whereas
the constant coefficient can be the estimate of c0.

7. Conclusions
In this paper, we study the optimal advertisement
insertion policywhen the user’s engagement level can
be tracked. We model the user’s engagement level
through a drifted Brownian motion. Each time the
advertisement is played, the user’s engagement level
decreases. To characterize the structural results, we
start with a model with an infinite horizon. Through
the stochastic impulse control tools, we propose a
threshold policy and analytically prove that it is op-
timal among all policies analytically. In addition, we
analyze how the thresholds in the optimal policy
change along with the discount factor, drift speed,
volatility, and fixed decrease level of the user’s en-
gagement level from the advertisement insertion.
Further, we investigate the case of a finite planning
horizon.We show that the optimal policy is still based
on a threshold policy, but the thresholds vary along
with time. Finally, we conduct extensive simulation
analyses to quantify the benefits of the proposed poli-
cies compared with the industry standard advertise-
ment insertion policies. The results indicate that our
proposed policies can not only generate significantly
higher profits but also improve the user’s reten-
tion rate.
Our research reveals several important and inter-

esting theoretical findings. First, despite the complexity
of the problem, we prove that a simple threshold pol-
icy is optimal among all class policies. This threshold
policy has the advantage of easy implementation.
Whenever the user’s engagement level reaches a trig-
ger threshold, it is optimal for the platform to insert an
advertisement of appropriate length. Both the trigger
threshold and optimal advertisement length can be
solved rapidly. Based on the sensitivity analysis, our
research shows that for the user who hates interrup-
tion during content (i.e., the fixed part of the user’s
dislike of the advertisement is large), is unlikely to
leave due to an unexpected event (i.e., discount factor
is small), has a high level of enjoyment of the material
on the platform (i.e., the drift speed of the user’s en-
gagement level is high), or whose engagement level
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varies dramatically (i.e., the volatility of the user’s
engagement level is large), it is optimal for the plat-
form to set a higher trigger threshold and insert a
longer advertisement. Moreover, for the finite plan-
ning horizon case, we find that the threshold policy is
still optimal, but the optimal trigger threshold be-
haves very interestingly. Specifically, it first decreases,
then increases, and finally decreases again as time
approaches the end of the planning horizon. We show
that this is a result of the balance between the ad-
vertisement length and the number of advertisements
inserted by the content provider.

Our study also provides important and relevant
insights for managers in related industries. First, it
should be the platform rather than the content creator
that decides the optimal timing of the advertisement.
In the current practice, most platforms allow the
content creator to choose the desired timing of the
advertisement during the content to maximize rev-
enue. If the platform can track users’ engagement
level, we show that using the optimal timing pro-
posed by this study can yield a much higher profit
than allowing the content creator to determine the
timing of the advertisement (typically preroll, mid-
roll, or a combination of the two). Further, our re-
search suggests that the platform should prepare
advertisements of differing lengths. This will help the
platform to maximize its profit, as the optimal policy
requires different advertisement lengths for different
consumers. Finally, using the fixed thresholds de-
rived from the infinite horizon case may produce
similar results as those using the thresholds derived
from the finite horizon case, without the heavy com-
putation required for the latter.

We briefly note a few limitations of this study and
provide some ideas for future research. First, we have
briefly discussed how to measure the parameters to
implement the customized advertising. In order to
fully commercialize the idea of this study, more re-
search needs to be conducted, which may require
interdisciplinary efforts from neuropsychology to
computer science. Second, this study is focused on the
optimal timing of digital advertising. Future research
can develop an algorithm that can jointly optimize the
content and timing of digital advertising for each in-
dividual consumer. Third, we have compared the
proposed policies with the prevalent policies through
an extensive simulation study. Empirical researchers
can further verify the results in a field experiment
setting. Fourth, the platform requires advertisement
with different lengths to implement the customized
advertising. Usually, this is not an issue, as the pro-
duction and editing costs are borne by the advertisers.
However, if the platform bears the costs of adver-
tisement production and editing, it might affect the

platform’s revenue. Future research may study this is-
sue explicitly and investigate the platform’s performance
in this scenario. Notwithstanding these limitations,
the current study presents a first step in under-
standing the optimal timing of digital advertising
and contributes to the emerging field of research on
wearable technologies.
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Endnotes
1The main reasons that we adopt Brownian motion (BM) rather than
geometric Brownian motion (GBM) are as follows. To begin with, the
GBM process always remains strictly positive. In contrast, BM can
reach the zero level; this fits the scenario that consumers can leave the
platform if their engagement level drops to zero, either because they
watch the lengthy advertisement or because they are bored with the
content. Further, the magnitude of the change in the GBM process
intensifies as time proceeds. In our research context, the magnitude of
increment or decrease of engagement level is relatively stable.
2We provide a more detailed description of why Brownian motion
fits into our setting in the Online Appendix I.
3Our study can be applied to most online/digital content in which
consumers cannot establish an expectation of when they will be
shown with the digital advertisement. If the consumer has an ex-
pectation of timing of advertisement during the content (i.e., National
Football League (NFL) Super Bowl), he or shemay behave differently.
4We have also verified that our main results hold when the revenue
function is convex in the advertisement length, rl2. Some of the results
are provided in Theorem 5 in the Online Appendix.
5Our model is flexible in terms of the specific advertisement being
played. That is, the platform can choose which advertisement to
insert depending on the consumer’s preference and taste. The plat-
form can gather the user’s preference information through data
mining and by analyzing clickstream data.
6When the planning horizon is infinite, β denotes the financial dis-
count rate, which ensures that the revenue function is well behaved.
Without this parameter, the revenue function approaches infinity.
When the planning horizon is finite, we can actually disregard this
parameter. Further, βwill have a similar impact as the user’s random
departure rate λ. We show this in Section 5.1 when we introduce the
stochastic horizon case.
7According to Björk (2009), in the context of a finite planning horizon,
“Generally speaking, there is little hope of having an analytical so-
lution of a free boundary value problem, so typically one has to resort
to numerical schemes” (p. 111), and “there are no analytical formulas
for the pricing function or the optimal boundary” (p. 345).
8 In Figure 8, the parameter settings are as follows: µ � 0.1, σ � 0.2,
r � 0, β � 0, c0 � 0.6, and e0 � 0.2.We have verified that our results are
robust to a wide variety of parameter settings. Results are available
in the Online Appendix K.
9Codes used in this study are available on request. All models and
algorithms in this section are implemented in MATLAB 2017b with
1,000 replications.

Kumar, Tan, and Wei: Optimal Insertion Policy of Behavioral Advertisement
Information Systems Research, 2020, vol. 31, no. 2, pp. 589–606, © 2020 INFORMS 605



References
Andrews M, Luo X, Fang Z, Ghose A (2016) Mobile ad effectiveness:

Hyper-contextual targeting with crowdedness. Marketing Sci.
35(2):218–233.

Bajpai P (2016) The current and future trends of digital advertis-
ing. Accessed April 5, 2019, https://www.nasdaq.com/articles/
current-and-future-trends-digital-advertising-2016-08-23.

Beales H (2011) The value of behavioral targeting. Accessed April 5,
2019, https://www.networkadvertising.org/pdfs/Beales_NAI
_Study.pdf.

Benaroch M (2018) Real options models for proactive uncertainty-
reducing mitigations and applications in cybersecurity invest-
ment decision making. Inform. Systems Res. 29(2):315–340.

Björk T (2009) Arbitrage Theory in Continuous Time. 3rd ed. (Oxford
University Press, Oxford, UK).

Branco F, Sun M, Villas-Boas JM (2012) Optimal search for product
information. Management Sci. 58(11):2037–2056.

Branco F, Sun M, Villas-Boas JM (2016) Too much information?
Information provision and search costs. Marketing Sci. 35(4):
605–618.

Chen J, Stallaert J (2014) An economic analysis of online advertising
using behavioral targeting. Management Inform. Systems Quart.
38(2):429–449.

Chen J, Fan M, Li M (2016) Advertising vs. brokerage model for
online trading platforms. Management Inform. Systems Quart.
40(3):575–596.

Chen Y, Li X, Sun M (2017) Competitive mobile geo targeting.
Marketing Sci. 36(5):666–682.

de Jesus A (2018) Artificial intelligence in video marketing – Emotion
recognition, video generation, and more. Accessed April 5, 2019,
https://emerj.com/ai-sector-overviews/artificial-intelligence-for
-video-marketing-emotion-recognition-video-generation-and-more/.

Fan M, Kumar S, Whinston AB (2007) Selling or advertising: Strat-
egies for providing digital media online. J. Management Inform.
Systems 24(3):143–166.

Faull J (2015) Jaguar using wearable tech and ground sensors to
measure crowd feeling at Wimbledon. Accessed April 5, 2019,
https://www.thedrum.com/news/2015/06/29/jaguar-using
-wearable-tech-and-ground-sensors-measure-crowd-feeling
-wimbledon.

Foster T (2016) Ready or not, companies will soon be tracking your
emotions. Accessed April 5, 2019, https://www.inc.com/magazine/
201607/tom-foster/lightwave-monitor-customer-emotions.html.

Ghosh S, Li X (2013) A real options model for generalized meta-
staged projects—Valuing the migration to SOA. Inform. Systems
Res. 24(4):1011–1027.

Guo H, Marston S, Chen Y (2015) Push or pull? Design of content
delivery systems. Decision Sci. 46(5):937–960.

Gupta S (2015) In mobile advertising, timing is everything. Harvard
Bus. Rev (November 4), https://hbr.org/2015/11/in-mobile
-advertising-timing-is-everything.

Hao L, Guo H, Easley RF (2017) A mobile platform’s in-app ad-
vertising contract under agency pricing for app sales. Production
Oper. Management 26(2):189–202.

Ke TT, Shen ZJM, Villas-Boas JM (2016) Search for information on
multiple products. Management Sci. 62(12):3576–3603.

Krishnan SS, Sitaraman R (2013) Understanding the effectiveness of
video ads: A measurement study. Proc. ACM Internet Measure-
ment Conf. (ACM, New York), 149–162.

Kumar S, Sethi SP (2009) Dynamic pricing and advertising for web
content providers. Eur. J. Oper. Res. 197(3):924–944.

Kumar S, Dawande M, Mookerjee VS (2007) Optimal scheduling and
placement of internet banner advertisements. IEEE Trans.
Knowledge Data Engrg. 19(11):1571–1584.

Liu D, Kumar S, Mookerjee VS (2012) Advertising strategies in
electronic retailing: A differential games approach. Inform. Sys-
tems Res. 23(3):903–917.

Lu X, Zhao X, Xue L (2016) Is combining contextual and behavioral
targeting strategies effective in online advertising? ACM Trans.
Management Inform. Systems 7(1):1–20.

Mookerjee R, Kumar S, Mookerjee VS (2017) Optimizing performance-
based internet advertisement campaigns. Oper. Res. 65(1):38–54.

Reale E (2017) Is this the end of pre-roll video ads? Accessed April 5,
2019, https://www.marketingtechnews.net/news/2017/jun/15/
end-pre-roll-video-ads/.

Reddy S (2015) Breathing for your better health: Controlling your
breath is an easy way to improve mental and physical health.
Wall Street Journal (January 26), http://www.wsj.com/articles/
breathing-for-your-better-health-1422311283.

Russo JE (1978) Eye fixations can save the world: A critical evaluation
and a comparison between eye fixations and other information
processing methodologies. Adv. User Res. 5(1):561–570.

Ryan P (2016) Time-based advertising is taking off. Accessed April 5,
2019, https://www.mediapost.com/publications/article/275913/
time-based-advertising-is-taking-off.html.

Shen Q, Villas-Boas JM (2018) Behavior-based advertising. Manage-
ment Sci. 64(5):2047–2064.

Shields M (2017) More than half of digital advertising is mobile.Wall
Street Journal (April 26), https://www.wsj.com/articles/more
-than-half-of-digital-advertising-is-mobile-1493218800.

Slefo G (2017) Desktop and mobile ad revenue surpasses TV for the
first time. Accessed April 5, 2019, http://adage.com/article/
digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/.

Sloane G (2017) Facebook to lift longtime ban on pre-roll ads. Accessed
April 5, 2019, https://adage.com/article/digital/facebook-test
-pre-roll-video-ads-ahead-watch-shows/311467.

Sun Z, Dawande M, Janakiraman G, Mookerjee V (2017) Not just a
fad: Optimal sequencing in mobile in-app advertising. Inform.
Systems Res. 28(3):511–528.

Tan Y, Mookerjee V (2005) Allocating spending between advertising
and information technology in electronic retailing. Management
Sci. 51(8):1236–1249.

Teixeira T, Wedel M, Pieters R (2012) Emotion-induced engagement
in internet video advertisements. J. Marketing Res. 49(2):144–159.

Villas-Boas JM (2018) A dynamic model of repositioning. Marketing
Sci. 37(2):279–293.

Vivero D (2018) The 3 healthcare benefits your millennial workforce
wants, from the POV of a millennial CEO. Forbes (March 26),
https://www.forbes.com/sites/amino/2018/03/26/the-3-healthcare
-benefits-your-millennial-workforce-wants-from-the-pov-of-a
-millennial-ceo/#64f25fc5749d.

Wedel M, Pieters R (2008) A review of eye-tracking research in
marketing. Malhotra NK, ed. Review of Marketing Research, vol. 4
(M. E. Sharpe, Armonk, NY).

Zhang XM, Zhang L (2015) How does the internet affect the financial
market? An equilibrium model of internet-facilitated feedback
trading. Management Inform. Systems Quart. 39(1):17–37.

Zhao X, Xue L (2012) Competitive target advertising and user data
sharing. J. Management Inform. Systems 29(3):189–222.

Kumar, Tan, and Wei: Optimal Insertion Policy of Behavioral Advertisement
606 Information Systems Research, 2020, vol. 31, no. 2, pp. 589–606, © 2020 INFORMS

https://www.nasdaq.com/articles/current-and-future-trends-digital-advertising-2016-08-23
https://www.nasdaq.com/articles/current-and-future-trends-digital-advertising-2016-08-23
https://www.networkadvertising.org/pdfs/Beales_NAI_Study.pdf
https://www.networkadvertising.org/pdfs/Beales_NAI_Study.pdf
https://emerj.com/ai-sector-overviews/artificial-intelligence-for-video-marketing-emotion-recognition-video-generation-and-more/
https://emerj.com/ai-sector-overviews/artificial-intelligence-for-video-marketing-emotion-recognition-video-generation-and-more/
https://www.thedrum.com/news/2015/06/29/jaguar-using-wearable-tech-and-ground-sensors-measure-crowd-feeling-wimbledon
https://www.thedrum.com/news/2015/06/29/jaguar-using-wearable-tech-and-ground-sensors-measure-crowd-feeling-wimbledon
https://www.thedrum.com/news/2015/06/29/jaguar-using-wearable-tech-and-ground-sensors-measure-crowd-feeling-wimbledon
https://www.inc.com/magazine/201607/tom-foster/lightwave-monitor-customer-emotions.html
https://www.inc.com/magazine/201607/tom-foster/lightwave-monitor-customer-emotions.html
https://hbr.org/2015/11/in-mobile-advertising-timing-is-everything
https://hbr.org/2015/11/in-mobile-advertising-timing-is-everything
https://www.marketingtechnews.net/news/2017/jun/15/end-pre-roll-video-ads/
https://www.marketingtechnews.net/news/2017/jun/15/end-pre-roll-video-ads/
http://www.wsj.com/articles/breathing-for-your-better-health-1422311283
http://www.wsj.com/articles/breathing-for-your-better-health-1422311283
https://www.mediapost.com/publications/article/275913/time-based-advertising-is-taking-off.html
https://www.mediapost.com/publications/article/275913/time-based-advertising-is-taking-off.html
https://www.wsj.com/articles/more-than-half-of-digital-advertising-is-mobile-1493218800
https://www.wsj.com/articles/more-than-half-of-digital-advertising-is-mobile-1493218800
http://adage.com/article/digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/
http://adage.com/article/digital/digital-ad-revenue-surpasses-tv-desktop-iab/308808/
https://adage.com/article/digital/facebook-test-pre-roll-video-ads-ahead-watch-shows/311467
https://adage.com/article/digital/facebook-test-pre-roll-video-ads-ahead-watch-shows/311467
https://www.forbes.com/sites/amino/2018/03/26/the-3-healthcare-benefits-your-millennial-workforce-wants-from-the-pov-of-a-millennial-ceo/#64f25fc5749d
https://www.forbes.com/sites/amino/2018/03/26/the-3-healthcare-benefits-your-millennial-workforce-wants-from-the-pov-of-a-millennial-ceo/#64f25fc5749d
https://www.forbes.com/sites/amino/2018/03/26/the-3-healthcare-benefits-your-millennial-workforce-wants-from-the-pov-of-a-millennial-ceo/#64f25fc5749d

	When to Play Your Advertisement? Optimal Insertion Policy of Behavioral Advertisement
	Introduction
	Literature Review
	The Model
	Optimal Solution and Managerial Insights
	Finite Horizon
	Comparison with Prevalent Policies and Parameter Estimation
	Conclusions


